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Fluid order and freezing 

Abstract. Computer calculations have been performed to investigate the 
short range order near the freezing point, for fluids of particles interacting 
with an inverse twelfth power potential and with the Lennard-Jones potential. 
For these potentials, it is found that the onset of freezing is marked by the 
number of neighbours within a certain radius exceeding that of a close packed 
system of rigid spheres of a diameter determined by the free energy minimi- 
zation procedure of Mansoori and Canfield. 

Recently, evidence of an upper bound on the density for the stability of a hard 
sphere fluid has been pointed out (Hutchinson and Conkie 1971). This bound 
appears to be related to the phase transition in that system. 

The bound is obtained by considering a function N(R) which gives the mean 
number of neighbouring particles contained within a sphere of radius R about any 
given particle 

R 

N(R) = 47in r2g(r) dr (1) 
0 

where g(r )  is the pair distribution function and n is the number density. I t  is 
intuitively obvious that for hard spheres N(R) cannot exceed Nc(R), its value for the 
hcp close packed solid, at any value of R. It has been observed, from computer 
results (Hutchinson and Conkie 1971) that in the region of the hard sphere (freezing 
point) transition the fluid N(R) approaches Nc(R) of the close packed solid at a 
value of R corresponding to the third neighbour distance. 

The question arises as to whether this result is unique to hard spheres or if it has 
a more general bearing on the liquid-solid transition. T o  investigate this, we have 
studied N(R) for systems of particles interacting with the potentials 

and 

The melting curves for both these potentials have been determined accurately by 
Monte Carlo methods (Hoover et al. 1970 and Hansen 1970). It should be noted 
that the potential of equation (2) is effectively the high temperature form of (3). N(R) 
was calculated using the Harwell molecular dynamics program (Beeman and 
Schofield, unpublished) using 500 particles. 



Letters to the Editor L115 

The results for the inverse twelfth power potential are shown in figure 1. N(R) 
was calculated for: (i) the fcc solid (the stable configuration with this potential) near 
the melting point, (ii) the fluid near the freezing density, (iii) the fluid in the unstable 
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Figure 1. Packing fraction, N(R) = 4xn J!j ra dr g(r)  for +(r) = 44u/r)la. 
Equivalent hard sphere diameter d = ( E / ~ T ) ~ ' % .  - N o @ )  fcc contact 
close packed lattice of hard spheres diameter d;  - 0- 0- solid at melting point, 
nd3 = 0.838; - x - x -  fluid at freezing point, nd3 = 0.815; H unstable 

fluid, nd3 = 0.863. 

(supercooled) region at a density much higher than freezing. Since for an inverse 
power potential distance scales with temperature as ( E / K T ) ~ / ~ u  it is appropriate in 
this case to plot N(R) against R/d where 

Also shown in figure 1 is N(R) for a contact fcc lattice for spheres of diameter d which 
we denote by N,(R). The three cases correspond to values of the density nd3 of 
0.838, 0.815 and 0.863 respectively at €/KT = 1.0. The close packed lattice density 
corresponds to nd3 = 4 2 .  

It may be questioned whether U is the appropriate hard sphere diameter for the 
closed packed system with which comparison is made. For the pure repulsive 
potential (2) its estimation by the free energy minimization method of Mansoori and 
Canfield (1969), gives d / a  = 1.02 which is near enough to unity for qualitative 
purposes. 
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As in the case of hard spheres, we see that the freezing transition appears to be 
related to N(R) rising to touch N,(R) at R = R, the third neighbour distance, so 
that the instability of the fluid phase is again determined by N(R) exceeding N,(R) 
at some value of R. 

1.0 1.5 2.0 2.5 

Figure 2. Packing fraction, N(R)  = 4-m jf ra drg(r) for 

Equivalent hard sphere diameter d =U. - N,(R) fcc constant close packed 
lattice of hard spheres, diameter d ;  - 0- 0 - liquid at freezing point, 

+(?) = 4€((U/R)12 -(u/R)9. 

nu3 = 0.87, kT/e = 0.75. 

In figure 2 are shown the results for the Lennard-Jones potential (equation (3)) 
at a density nu3 = 0.875 and temperature kT/e N 0.75, a point very close to the 
freezing curve for this potential (Hansen 1970). Also shown is the fcc N,(R) for hard 
spheres of diameter U .  (For this phase point the equivalent hard sphere diameter d 
chosen by the procedure of Mansoori and Canfield, is again very close to u.) 

I t  can be seen that at the transition N(R) again rises to touch Nc(R), but this time 
at the second neighbour distance R2. Clearly this must reflect the effect of the 
( u / R ) ~  part of the potential in reducing the repulsion at short distances, allowing the 
closer approach of particles. 

The calculations, shown in figure 1, for the repulsive potential indicate that the 
number of neighbours within a sphere of radius R, is considerably higher in the liquid 
at the freezing point than in the solid at the melting point, even though the solid 
density is about 2.5% higher. This excess becomes more pronounced in the meta- 
stable liquid and it can be argued that it is this local excess which produces the 
increase in free energy that leaves the solid the more stable state. Moreover the liquid 
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N(R) is initially (R 6 R,) less than that of the solid, and thus it is clear that 
the liquid structure is not that of a ‘loosely packed solid’ as is often suggested. We 
may note that an initial depletion of neighbours followed by an excess is to be expected 
in order to satisfy the thermodynamic constraint of equal pressure and temperature 
at the phase transition. 

Finally, we should like to commend the use of the function N(R) in the discussion 
of short range order in the liquid state. Although it reveals the ‘structure’ less 
dramatically than g(R),  the mean number of neighbours within a radius R, or the 
inverse function R(N), the radius within which the mean number of neighbours is 
N ,  are more precise functions than the rather nebulously defined ‘coordination 
number’ often quoted. The significant volume to consider appears to be that occupied 
by twenty or thirty particles. It will be interesting to investigate whether the 
criterion for the stable fluid N(R) < N,(R) holds for other types of interaction. 
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